Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract A growing body of evidence suggests that in adults, there is a spatially consistent “inferior temporal numeral area” (ITNA) in the occipitotemporal cortex that appears to preferentially process Arabic digits relative to non-numerical symbols and objects. However, very little is known about why the ITNA is spatially segregated from regions that process other orthographic stimuli such as letters, and why it is spatially consistent across individuals. In the present study, we used diffusion-weighted imaging and functional magnetic resonance imaging to contrast structural and functional connectivity between left and right hemisphere ITNAs and a left hemisphere letter-preferring region. We found that the left ITNA had stronger structural and functional connectivity than the letter region to inferior parietal regions involved in numerical magnitude representation and arithmetic. Between hemispheres, the left ITNA showed stronger structural connectivity with the left inferior frontal gyrus (Broca’s area), while the right ITNA showed stronger structural connectivity to the ipsilateral inferior parietal cortex and stronger functional coupling with the bilateral IPS. Based on their relative connectivity, our results suggest that the left ITNA may be more readily involved in mapping digits to verbal number representations, while the right ITNA may support the mapping of digits to quantity representations.more » « less
- 
            Numerosity estimation performance (e.g., how accurate, consistent, or proportionally spaced (linear) numerosity-numeral mappings are) has previously been associated with math competence. However, the specific mechanisms that underlie such a relation is unknown. One possible mechanism is the mapping process between numerical sets and symbolic numbers (e.g., Arabic numerals). The current study examined two hypothesized mechanisms of numerosity-numeral mappings (item-based “associative” and holistic “structural” mapping) and their roles in the estimation-and-math relation. Specifically, mappings for small numbers (e.g., 1–10) are thought to be associative and resistant to calibration (e.g., feedback on accuracy of esti- mates), whereas holistic “structural” mapping for larger numbers (e.g., beyond 10) may be supported by flexibly aligning a numeral “response grid” (akin to a ruler) to an analog “mental number line” upon calibration. In 57 adults, we used pre- and post-calibration estimates to measure the range of continuous associative mappings among small numbers (e.g., a base range of associative mappings from 1 to 10), and obtained measures of math competence and delayed multiple-choice strategy reports. Consistent with previous research, uncalibrated estimation performance correlated with calculation competence, controlling for reading fluency and working memory. However, having a higher base range of associative mappings was not related to estimation performance or any math competence measures. Critically, discontinuity in calibration effects was typi- cal at the individual level, which calls into question the nature of “holistic structural mapping”. A parsimonious explanation to integrate previous and current findings is that estimation performance is likely optimized by dynamically constructing numerosity-numeral mappings through the use of multiple strategies from trial to trial.more » « less
- 
            null (Ed.)Abstract Debate continues on whether encoding of symbolic number is grounded in nonsymbolic numerical magnitudes. Nevertheless, fluency of perceiving both number formats, and translating between them, predicts math skills across the life span. Therefore, this study asked if numbers share cortical activation patterns across formats and tasks, and whether neural response to number predicts math-related behaviors. We analyzed patterns of neural activation using 7 Tesla functional magnetic resonance imaging in a sample of 39 healthy adults. Discrimination was successful between numerosities 2, 4, 6, and 8 dots and generalized to activation patterns of the same numerosities represented as Arabic digits in the bilateral parietal lobes and left inferior frontal gyrus (IFG) (and vice versa). This indicates that numerosity-specific neural resources are shared between formats. Generalization was also successful across tasks where participants either identified or compared numerosities in bilateral parietal lobes and IFG. Individual differences in decoding did not relate to performance on a number comparison task completed outside of the scanner, but generalization between formats and across tasks negatively related to math achievement in the parietal lobes. Together, these findings suggest that individual differences in representational specificity within format and task contexts relate to mathematical expertise.more » « less
- 
            null (Ed.)Author Summary Previous studies of local activity levels suggest that both shared and distinct neural mechanisms support the processing of symbolic (Arabic digits) and nonsymbolic (dot sets) number stimuli, involving regions distributed across frontal, temporal, and parietal cortices. Network-level characterizations of functional connectivity patterns underlying number processing have gone unexplored, however. In this study we examined the whole-brain functional architecture of symbolic and nonsymbolic number comparison. Stronger community membership was observed among auditory regions during symbolic processing, and among cingulo-opercular/salience and basal ganglia networks for nonsymbolic. A dual versus unified fronto-parietal/dorsal attention community organization was observed for symbolic and nonsymbolic formats, respectively. Finally, the inferior temporal gyrus and left intraparietal sulcus, both thought to be preferentially involved in processing number symbols, demonstrated robust differences in community membership between formats.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
